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/ Abstract

Two theoretical descriptions have been developed for the phase boundary

dynamics during crystallization of amorphous films by scanning with the slit

image of a cw laser or. of any cw energy beam. The first reduces the problem

to the solution of a one-dimensional integral equation, which allows a choice

of initial conditions. Depending on the background temperature, numerical

solutions yield either periodic or runaway motion of the amorphous-crystalline

(a-c) boundary, as observed in experiments on scanned laser crystallization of

thin films of a-Ge on fused-silica substrates. The calculations give a

semi-quantitative fit to the experimental results for the spatial periodicity

observed in the crystallized films as a function of background temperature.

Profiles of film temperature as a function of distance from the laser image at

successive times have been computed for both the periodic and runaway cases.

The model qualitatively explains many of the effects observed during scanned

cw laser crystallization, including periodic fluctuations in light emission.

The second theoretical description is a more exact two-dimensional treatment,

applicable only to cases of steady-state motion of the a-c boundary, which

rigorously handles heat flow into the substrate. This treatment has been used

to calculate the boundary velocity during steady-state runaway._The

dependence of this velocity on background temperature and on film and

substrate thermal properties and thickness has been determined. At the

minimum background temperature required for runaway the calculated value of

the steady-state velocity is ~ 140 cm/sec for the case of a Ge film 0.3 in

*11



thick on a fused-silica substrate 1 mm thick. Experimental values lie in the

range 100-300 cm/sec. A class of laser-controlled steady-state solutions has

been obtained for which the boundary velocity is equal to the laser scanning

velocity but lower than the boundary velocity for uncontrolled runaway. The

existence of these solutions suggests the possibility of preparing

single-crystal semiconductor sheets by scanning amorphous films in a manner

that achieves uniform, laser-controlled motion of the a-c boundary rather than

either periodic or runaway motion.
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1. Introduction

The study of the transformation of semiconductor films from the a

amorphous to the crystalline state has become a matter of great interest in

the last few years. The time dependence of the transformation has been

investigated as a function of film temperature for Gel and Si, 2 and the latent

heat of transformation and transformation temperature has been measured for

Ge,3.4 Si, 4 and Ge-Si alloys.4 The so-called "explosive" transformation of

semiconductor films has been reported by a number of workers, 5 and the

velocity of the transformation has been measured.
6

We have recently reported the observation of a number of unusual

phenomena during a study of the laser crystallization of amorphous Ge films. 7

P

These phenomena included the formation of periodic structural features,

pulsations of film temperature during laser scanning, and runaway

crystallization of the entire film following momentary contact with the laser

image. To provide a qualitative description of the laser-crystallization

process, we presented a one-dimensional integral equation description of the j

amorphous-crystalline (a-c) phase boundary motion,8 which takes into account

the latent heat emitted during the a-c transformation. Numerical solution of

the integral equation provides considerable insight into the dynamics of the

a-c boundary. The results were used to obtain a semiquantitative fit of the

temperature dependence of the structural periodicity observed in

crystallization of amorphous Ge films on fused silica substrates.

!1
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In this report we present a somewhat Improved version of the

one-dimensional integral equation description of laser crystallization which

takes account of the loss of heat to the film substrate by introducing into

the equation an ad-hoc exponential time dependent damping factor. The results

obtained for the motion of the a-c boundary are qualitatively very similar to

those obtained earlier.8 The solution of the integral equation is used to

obtain series of plots of temperature as a function of lateral position in the

film at fixed times after the onset of the crystallization process. These

plots provide an understanding of the temperature pulsations during the

formation of periodic structures in film morphology, as well as a vivid

picture of the onset of a-c phase boundary runaway. The general features of

the model are strongly supported by our recent experimental study of a-c

boundary dynamics during laser crystallization.9

The one-dimensional integral equation solutions provide an approximate

description of transient as well as steady-state behavior of the a-c phase

boundary motion. On the other hand, we have obtained a class of less

approximate two-dimensional solutions which are stationary in a frame of

reference moving with the a-c phase bounary. It is far more complicated to

try to obtain transient solutions of the two-dimensional problem. The

stationary solutions are exact If the temperature dependence of film and

substrate properties as well as differences in amorphous and crystalline

properties are neglected. The solutions allow a calculation of the a-c

runaway boundary velocity, as well as the velocity of the boundary when the

2
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laser controls its motion. The runaway velocities calculated are in

reasonable agreement with observation.

In Section II of this paper we present the transient and periodic

steady-state solutions of the one-dimensional integral equation description of

laser crystallization. The model results are compared to experimental results

for laser crystallization of a-Ge. In Section III we obtain and compare the

steady state runaway solutions of the integral equation approximation and the

two dimensional model. In section IV we consider steady state laser-guided

solutions obtained from the integral equation approximation and the exact

model. In Section V the results obtained and the possibility of achieving

steady state laser-guided a-c boundary motion are discussed. The numerical

solution of the integral equation is discussed in Appendix A, and the

stationary solution of the exact two-dimensional problem is derived in

Appendix B.

II. Transient and Periodic Solutions of the Integral Equation

A. Derivation of the Integral Equation

When the temperature of an amorphous semiconductor film is raised,

tranformation to the stable crystalline form takes place at a rate that

increases exponentially with temperature,1 ,2 so that over a narrow temperature

interval at a temperature - Tc the ratio of the time taken for a laser scan

changes from >>I to <1. We therefore argue that a reasonable description of

the tranformation is given by assuming that it occurs when the amorphous film

reaches a critical temperature Tc. Support for this point of view comes from

3tlj __ _ _ _ _ _ _



the observation of a rather sharply defined transformation temperature in

latent heat measurements. 4 It has been suggestedlO that the transformation may

in fact correspond to the change from the amorphous to the liquid state,

followed by a transformation to the crystalline state. In this case the

existence of a well defined transition temperature Tc is expected. The

assumption of a transformation at a constant temperature Tc should be a

reasonable approximation in either case, and is justified by the good

description of experiment that results. The modification of this assumption,

and the detailed nature of the transformation are considered further in the

discussion of Sec. V.

We assume that the temperature dependence of the film properties and the

difference in these properties between the amorphous and crystalline states

can be neglected. This is an acceptable approximation at temperatures in the

range of the amorphous-crystalline transformation (- 500-700*C for Ge). With

these simplifying assumptions, an integral equation formalism11 can be used to

describe the motion of the phase boundary. The geometry assumed for the laser

crystallization calculation is shown schematically in Fig. 1. The

semiconductor film, which is deposited on a thick substrate, is of infinite

extent in the y and z directions and so thin that its temperature is constant

in the x direction. The laser slit image is of infinite length in the z

direction and moves at a velocity v in the positive y direction. At time t =

0, the phase boundary is located at yo, with the crystalline phase to the left

(y ( yo) and the untransformed amorphous phase to the right (y > yo). The

4
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laser image carries with it a steady state temperature profile To (y-vt). At

t = 0, the temperature at the phase boundary reaches Tc and the boundary

beqins to move irreversibly toward the right, with heat being liberated at a

rate per boundary unit cross sectional area of fLp'(t), where L is the latent

heat of a-c transformation of the semiconductor, p is the semiconductor

density, Y(t) is the position of the boundary at time t, and we have included

a factor f which is less than 1 and accounts in an approximate way for the

loss of a fraction (1-f) of the latent heat to the substrate as it is

liberated. In the present version, we will also include an exponential

damping factor y to represent the eventual diffusion into the substrate of the

fraction f of the heat propagating in the film. We shall see that f and y,

which are introduced as ad hoc parameters in the one-dimensional integral

equation, have their counterparts in the two dimensional steady state model

(Sec. 111B), where they are determined in the course of the calculation,

leaving no adjustable parameters. The effect of strain and other mechanical

forces is not explicitly included, although L could include a contribution due

to strain. Then the temperature T(y,t) at any point y along the film at time

t is given by the one-dimensional integral relation11

T(y,t) = T0 (y-vt) + (1)

t r r
fL f Y(t) Iexp (-y (t-t'] Iexp L- 4.Y-t'J11 [4 wj -1/2 (t- 1 2

S0 J [ 4iLt-t JJ

where C is the specific heat of the film, o- K/Cp defines its thermal

6
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diffusivity, K is its thermal conductivity, and y is a phenomenological

Equation (1) has a simple physical interpretation. It states that the

temperature at a polnt y at time t is a superposition of the contribution due

to the mvng laser, T (y-vt), and the sum of contributions doe to sources of

heat fLpy(ti)dt, emitted at positions Yt at earlier times t. The source

function or Green's function

-tt-t

describes the one-dimensional diffusion of heat away from the source, and the

factor exp t-t represents the decay of heat out of the film and into the

subst rate or atmosphere.

An integral equation for Y(t) can be obtained by using the condition

that the temperaure at the phase boundary Is Tc, or

T [Y(t),t a Tc T (2)

For purposes of calculation, it is convenient to rewrite Eq. (2) in the frame

of reference moving with the laser image. We introduce the position variable

u(t) - y(t) -vt, where u(t) is measured from the center of the laser image as

origin. The temperature To(u) is modeled in the form To(u) * Tb + ATL exp

f-(u/a) 2J, where Tb is a uniform, time-independent background temperature and

the temperature contribution due to the laser is described by a Gaussian of

width a and magnitude AlT. Finally, introducing a unit of length d for

I7 i I i . . . .. ; "
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normalization purposes and normalizing quantities, we can write the integral

equation for the motion of the phase boundary as

1 - a exp L 2
bT

+ n f 1[§(T') + V/(T-Tril/ 2 1 x
0

[exp (r( T- T') XP (-[S(tr)-S(T') + V (r-T'iJ2 /TT, (3)

where at- ATdj(TcTb), (4a)

i

no - fn', n' = L/Cdl(TctTb), (4b)

4 Kt/d 2, V =_dv/4K, S =_U/d, t (T') [dS(ti'/d-rI, r =(d
2/4c)y, b = aid,

and U is the position of the phase boundary measured from the center of the

laser image. For the discussion of this section, it is convenient to choose

d - a, so that b - 1.

Equation (3) is not in itself sufficient to give physically acceptable

solutions for the motion of the phase boundary, since it allows negative values

of [§(r) + V], which imply the unphysical motion of the phase boundary backJ

toward the laser image, with the reconversion of crystalline material to the

amorphous state, accompanied by the reabsorption of latent heat. To constrain

Eq. (3) to physically acceptable solutions, we require that when the numerical

solution of Eq. (3) yields [((r' + VJ r 0, this quantity is to be set equal

to zero, with the phase boundary remaining stationary.

MAN Mon
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Equation (3) has been solved numerically (see appendix A) to obtain S as

a function of T for representative values of c, n, V, and r, with the boundary

conditions that §(T) = 0 at r - 0 and that S(O) is given by 1= a exp

{-[S(O)] 2}. The values of the parameters have been chosen for convenience in

numerical solution of Eq. (3) rather than an optimal fit to experimental

conditions. Figure 2 shows plots of S vs T for V = 0.3, r = 30 and three

increasing values of n, with a increasing in proportion to n (which

corresponds, from Eqs. (4a) and (4b), to increasing Tb toward Tc while holding

ATZ fixed.) For each value of n, S initially increases rapidly because the

latent heat liberated by the phase transformation raises the temperature ahead

of the boundary, accelerating its forward motion. As the boundary moves away

from the laser image, the contribution of the laser to the temperature ahead of

the boundary decreases rapidly. For n = 0.3, the boundary motion soon

decelerates, and the boundary comes to rest, remaining fixed for a time

interval during which its temperature begins to drop rapidly below Tc and S

decreases with velocity § - -V. With the approach of the laser image the

boundary temperature gradually increases to Tc, the boundary once more moves

forward, and S again increases. This cycle is repeated indefinitely,

resulting in the oscillations in S seen for n - 0.3 in Fig. 2. The inset in

Fig. 2 shows the result of an experiment9 which measures the infrared light

transmitted through a thin film of Ge as the a-c boundary moves in a cw laser

crystallization experiment. Since the transmission of crystalline Ge is much

greater than that of amorphous Ge, the changes in transmitted light signal

- ,~m, ., , ' ' " " ' ' " ' ' :9



I C83-4027
2.5 I I I

Z

V-0.3 Qr*30 -- 10msec--mI " : 3 0 oo-

2.0 <Z
0.8

TIME

8006

1.0

0 0.5 1.0 1.5 2.0

Fig. 2. Normalized position of a-c phase boundary, S(T), as a function
of normalized time, T, given by solutions of Eq. (3) for three different
values of n. The inset shows the result of an experiment in which change
of transmission is proportional to S(T).
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with time are proportional to the a-c boundary position with time. The

similarity between the oscillations observed in the experiment and those shown 4
in the curve for n =0.3 is evident.

When n is increased by increasing Tb, less heat is required to raise

the temperature of the film to Tc ahead of the laser image, and the phase

boundary moves farther beyond the laser before it decelerates and comes to

rest. This trend is illustrated by the calculated curve for n = 0.6 in Fig. 2

and leads to motion with a longer period. When n becomes large enough, the

heat liberated during crystallization is sufficient to sustain the

transformation, causing the boundary to "run away" from the laser image. This

situation, which is illustrated by the curve for n - 0.8 in Fig. 2, accounts

for the observation that for high enough background temperature the entire

film is crystallized following momentary contact with the laser image.

In addition to explaining runaway crystallization, the proposed model

can also explain our other qualitative observations on laser crystallization.

The model does not directly predict observable structural changes in the

laser-treated films. However, different regions of such films can be expected

to differ in microstructure depending on their rates of transformation and

therefore on their thermal history. This suggests that the periodic

structural features observed on laser-crystallized films (see Figs. 3 and 4)

can be attributed to oscillations in S like those implied by the curves for

TI a 0.3 and 0.6 in Fig. 2. Furthermore, for sufficiently high values of n

these oscillations produce large fluctuations in the rate of heat liberation

11



and therefore in temperature. This can explain the periodic fluctuations in
light emission observed during some laser crystallization experiments (see
Sec. 11 C).

B. Comparison with Experiment

In order to carry out a semi-quantitative test of the model, we have

measured the spatial period of the structural features of laser-crystallized

Ge films as a function of Tb.7 Experiments were performed on amorphous films

0.3 to thick, deposited on fused silica substrates and scanned at v = 0.5

cm/sec with a slit image of a cw Nd:YAG laser. Initially, a film at room

temperature was irradiated at a laser power level just high enough to produce

crystallization, which yielded structure in the transformed film with a

spatial period of - 50 on. In the following experiments each film was heated

to a successively higher value of Tb, the laser scanned at the same power

level, and the spacing measured after crystallization. This procedure was

continued until Tb approached the value resulting in runaway.

The periodic features obtained by crystallization of a film with Tb of

room temperature are shown in Fig. 3, an optical transmission micrograph.

These features are shown at higher magnification by the left side of Fig. 4,

which is a bright-field micrograph obtained by transmission electron

microscopy (TEN) using 125 keV electrons. Each feature consists of four

different regions: first a narrow amorphous region, then a region containing

a mixture of amorphous material and fine grains, next a broad region of fine

grains, and finally another broad region of much larger, elongated

12
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L C83-4181B

ELECTRON

DIFFRACTION

0.3pm THICK 125 keV

Fig. 4. Left: Bright-field transmission-electron micrograph of a
laser-crystallized Ge film, illustrating four different microstruc-
ture regions. Right: Transmission-electron diffraction patterns
for fine-grained and large-grained regions (upper and lower, respec-
tively).
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crystallites aligned parallel to each other. The fine-grained region yields

transmission electron diffraction patterns like the one shown at the upper

right of Fig. 4, with the rings typical of polycrystalline material. The

large crystallites of the final region are clearly visible as ribbon-like

structures in the lower left corner of the TEM micrograph, and yield

characteristic single-crystal transmission electron diffraction patterns, as

illustrated at the lower right of Fig. 4. It should be emphasized that these

large aligned crystallites are produced without the presence of a relief

structure in the amorphous silica substrate.12 The nature of the crystalline

structure within each period is discussed further in Sec. V.

To use the model to calculate the spatial period in the film, we assume

that this period is equal to the distance AY traversed by the a-c phase

boundary during each of its successive jumps, from the point where

crystallization is initiated by the approaching laser to the point where the

boundary comes to rest ahead of the laser. This distance is just equal to

(aVAT), where V is the normalized laser scanning velocity and AT is the

normalized time interval between the beginnings of two successive jumps, i.e.,

the period of the oscillations in S illustrated by the curves for n = 0.3 and

0.6 in Fig. 2.

To obtain a relationship between AY and Tb, we first used Eq. (3) to

calculate VAT as a function of in for representative values of a, V, and r.

Because of the introduction of the new damping parameter r, the results

obtained are numerically somewhat different from those reported earlier,
7,8



but are qualitatively unchanged. The calculated curve for a - 6 n

(corresponding to fixed ATt), V - 0.3, and r - 30 is shown in Fig. 5. With

increasing n, AT and therefore VAT increase rapidly, leading to boundary

runaway by n - 0.69. For a given value of n, VAr is found to be quite

insensitive to either ctor V, showing that the boundary jump distance is

determined primarily by the properties of the film and by Tb. and does not

depend strongly on either the power or velocity of the laser.

In order to compare theory with experiment, the curve of VAT vs n shown

in Fig. 5 was used to obtain curves relating the ratios AY/AYo and Tb/Tc,

where AYo is the spatial period in the film (i.e., the boundary jump distance)

for Tb of room temperature. To calculate these curves, Eq. (4b) was rewritten

in the lumped-parameter form nrno/(1-Tb/Tc), where no = fL/T 1/2CTc. if Tb and

Tc are expressed in *C, room temperaure is much less than Tc, so that no - n

at room temperature, and AYo corresponds to no. Curves of AY/AYo vs Tb/Tc =

1-no/n were calculated by adopting pairs of numerical values of rn and Tc,

then compared with the experimental points (for each point, the adopted value

of Tc was used to determine Tb/Tc). A reasonable overall fit has been

obtained, as shown in Fig.6, for no - 0.22 and Tc a 6800C. The abrupt increase

in AY/AYo when Tb/Tc exceeds about 0.6 is associated with the approach of Tb

to the value Tr above which laser irradiation results in boundary runaway.

From Fig. 6, using Tc - 6800C, Tr - [0.7 TcJ - 500*C. It is interesting to

note that Bagley and Chen10 predict a transformation of a-Ge to the liquid

state at a temperature of 6960C, well below the crystalline-to-liquid

16
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Fig. 6. Theoretical curve and experimental points for AY/AYo vs

temperature ratio Tb/Tc. Curve is calculated using Fig. 5 with

no = 0.22 and Tc = 6850C.
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transition temperature (937C), and close to the value of ~680*C obtained

from our analysis.

From the definition of nb, fL - wI/ 2CTcno. Taking C - 0.08 cal/qOC for

amorphous Ge (Ref. 3) and the values of Tc and no used for Fig. 6, we obtain

fL = 21.4 cal/g. In calorimetric measurements made during the rapid heating

of amorphous Ge films, Fan and Anderson4 observed a sharp transition at ~

5010C and measured L = 39.8 cal/g. Using this value for L yields the result f

0.54. The value of f obtained seems large, and is discussed further in

Sec. II18.

The values of S(T) plotted in Fig. 2 for the regions in which the phase

boundary moves away from the laser image are not quantitatively correct, since

the calculated values of S in this region increase more steeply as the size of

the interval 6T chosen for the numerical integration of Eq. (3) is decreased.

An examination of the integral equation indicates that in the beginning of

these regions its solutions is singular and the initial velocity is infinite.

This represents a limitation of the model since we have implicitly assumed

that growth of the crystalline phase can follow at all times the requirements

of the solution of the heat flow problem. In fact, the failure of this

assumption may account for the presence of amorphous and fine-grained material

in the initial portion of each periodic feature of the laser-crystallized

films. Since the calculated values of S at which the boundary comes to rest

approach a limit as 6T decreases, the computed spatial periods are reasonably

reliable.

19
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The Gaussian width of the laser temperature profile can be determined

from the relationship a = AY/Va'r. From the measured AYo - 50 ;im at room

temperature and VAr - 0.3 corresponding to To - 0.22 in Fig. 5, a is - 170 in,

a reasonable value. The scanning velocity v corresponding to the normalized

velocity V in our calculation can be obtained by using the relation

v = 4KV/a. A value for K of - 0.09 cm2/sec is estimated by taking

K = 0.035 cal/cm sec°C, 13 p - 5 g/cm3, and C = 0.08 cal/gOC. The value of

normalized laser scan velocity used in our calculations, which was chosen

for convenience in numerical integration, was V = 0.3. This corresponds to a

laser scan velocity v of - 6 cm/sec, much higher than the actual value of 0.5

cm/sec used in our experiments. As indicated above, the results of our

analysis of periodic a-c boundary motion are insensitive to the value of v

assumed for the calculation as long as v is much less than the boundary

velocity vac. For both runaway 6 and periodic motion9 of the boundary,

experimental values of vac lie in the range of 100 -300 cm/sec.

C. Temperature Distribution During Periodic Boundary Motion

Once the a-c boundary position as a function of time, S(T), is known,

Eq. (1) can be used to calculate the temperature at an arbitrary point So

in the film at time T. The resulting expression for the reduced temperature

In terms of normalized quantities in the frame of reference moving with the

laser is:

20

q l ~ lll ! I I Iq ll ml I,



T, (S',T) = exp {-[S,32)

+ n f (T) + V/(-')1/21 x
0

[exp {-r (r-r1)I[eXP - S(r) + V (T-TiJ2,(t>ri}Id (5)

where the reduced temperature is

TI (S',) = T(ST)- Tb
Tc - Tb

It can be seen that when S' is the position of the a-c boundary, S(T),

T(S',T) = Tc, T-(S,T) = 1, and Eq. (5) becomes the integral equation (3).

The numerical evaluation of Eq. (5) is discussed in Appendix A.

To illustrate the temperature fluctuations occurring during periodic

boundary motion, we have used Eq. (5) to calculate T'(S',T) as a function of

S" for several fixed values of T, for the case op 3.6, iw 0.6, V = 0.3, and r

= 30. The results are shown in Fig. 7. It can be seen that during the forward

motion of the a-c phase boundary, a temperaure pulse develops and propagates

away from the center of the laser temperature profile. Before the pulse can

escape, however, its motion stalls and it decays.

The case of the periodic fluctuations in light emission observed in

some experiments is illustrated in Fig. 8 by the case w1.2, n = 0.6, V - 0.3,

and r = 30. In this case the laser temperature contribution is just barely

large enough to initiate a-c boundary motion, and the latent heat released is

enough to cause a sharp rise in temperature accompanied by the emission of
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Fig. 7. Normalized temperature distribution TV(S', ') as a function
of S" for several values of T. Parameters were chosen to illustrate
the case of periodic a-c boundary motion.
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Fig. 8. Normalized temperature distribution T'(S', T) as a function of
S' for several values of T, illustrating periodic temperature flare-up.
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black body visible radiation. The peak temperature Tp reached can be

calculated for this example by noting that

Tp - Tb + Tp" (Tc - Tb), (6)

where Tp- is the peak value reached in Fig. 8. Equation (6) can be rewritten

Tp - Tc [(1- ro) + Tp (b)].

Using Tc = 680°C, no = 0.22, n - 0.6, and Tp' -2.2, we have

Tp - 9860C

Although the numerical result is only approximate (since the computed

velocity of the a-c boundary depends on the time interval 6r chosen for

numerical integration), the calculation indicates that a large rise in

temperature, and therefore light emission, can occur during a-c boundary

motion.

III. Steady State Runaway Solutions

A. Integral Equation Model

As we have seen in Sec. IIA, for large enough values of n and

relatively small values of normalized laser scan velocity V, the solutions of

Eq. (3) are of the runaway type with the a-c boundary escaping from the

region of the laser image and moving far ahead of it. In this case, Eq. (3)

can be solved exactly without the need for numerical integration, by making

the assumption that a steady state, constant velocity solution exists after
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the passage of a long enough time To. For the boundary far ahead of the laser

image the laser contribution to Eq. (3) is negligible. We rewrite Eq. (3)

at time To in the frame of reference moving with the boundary at the

normalized velocity Vac >> V, with Vac to be determined. In this frame of

reference, V is replaced by Vac , S() a S(r'), and §-(r) - 0 (since the

solution is stationary). Equation (3) then becomes

1 n f T [Vac/(T- r-) 1/ 2] x
0

~xp r{-r V.i~jx {-[Vac (ri2(r}d T. (7)

Introducing the new variable z2  (r + Vac 2) (T-T'), Eq. (7) can be rewritten

[r + Vac211/2 TO1/ 2  -z 2
1 Z n Vac x 2 f dz

[r + Vac 2]1/

= n w1/2 Vac err {Ir + Vac 2 11/ 2
TO1 / 2 } (8)

[r + Vac2]
1/ 2

2where erf W 2 x e-z2 dz, the error function.

25



The error function approaches 1 for x > 2. Therefore, for

[rF + Vac 2 1/ 2  11 1/2 > 2, Eq. (8) reduces to

1 = null2 Vac (9)

[r + Vac
12 ]

Equation (9) can be used to determine the runaway a-c boundary velocity Vac

from the values of in and r:

Vac rl1 2  (10)
1/2En2 W-13

It can be seen that Eq. (10) has no solution for any value of Vac, no matter

how large, unless n w 1/2 > 1, or n > 0.56.

In the runaway case, Eq. (5) for the reduced temperature distribution

can also be evaluated exactly for large To. In the same frame of reference

moving with normalized velocity Vac, Eq. (5) becomes

T"(S) - n f [Vac/('r--r")1/21 xp (-r (Tr-'r") x
0

Xp {-S' + Vac (T-,)] 2 / (T-T*) )IdT (11)

II
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II

where S" is measured from the position of the a-c phase boundary. Eq. (11)

can be written,

T'(S') n Vac x
1/2

[[r + Vac 2 ]P/ 2  12

2 e-2S" Vac f 2 e -  q2  2z (12)

where q2 = S-2 [r + Vac 2 ] .

Using the known definite integral,

.p2z2  .q2 /z 2  -2pq
fO e e dz =/i e (p,q > O)

we obtain, for large To,

T-(S-)= nil/ 2  1/2 Vac e -2S'Vac e-2 [r Vac 2 ] 1/ 2 ;S' . (1)

[r+ Vac2]
/ 2

For S' = 0, corresponding to the position of the a-c boundary, T'(S') 1, and

Eq. (13) reduces to Eq. (9), as it should.

To explore the approach to the steady-state runaway temperature

distribution, we have used the values of S(-n) obtained from numerical

integration of Eq. (3) for a * 2.0, n * 0.8, V * 0.3, and - 30, to calculate
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Fig. 9. Normalized temperature distribution T(S, -r) as a function of S'
for several values of T. The parameter values a - 2.0, n~ - 0.8, V =0.3
and r *30 have been chosen to illustrate the case of runaway.
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T'(S',r) from Eq. (5) for several values of T. The results are shown in Fig.

9. In contrast to the periodic solution case shown in Fig. 7, the a-c

boundary in the runaway case develops a well-defined peak-structure in

T'(S',T), which propagates away from the laser image as r increases. The

velocity of propagation of the a-c boundary and the amplitude and shape of the

propagating temperature pulse shown in Fig. 9 are not in agreement with the

exact limiting results given by Eqs. (10) and (13), respectively. Thus, from

Eq. (10) with r = 30 and n - 0.8 we have the exact normalized velocity Vac

5.45, much less than the normalized velocity obtained from numerical

integration and indicated by Fig. 9. These discrepancies may in part be due

to computational problems, but may also be due to a slow approach to the

steady state. (It should be noted that at the maximum S(T) shown, the a-c

boundary has moved only a few times the Gaussian width, - 170 lin, from the

laser beam.)

B. Two-Dimensional Solution

In Appendix B we obtain expressions for the temperature distribution in

the steady state a-c boundary runaway condition for a semiconductor film as a

function of normalized distance S' from the boundary by the solution of a

two-dimensional bounary value problem. In this treatment the flow of heat

into the substrate is handled exactly, and it is not necessary to introduce

ad-hoc parameters equivalent to f and y of the one-dimensional integral

equation model. The solution of the problem is discussed in Appendix B.
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Equations (B31a) and (B31b) give the temperature distribution TI(S') in

the semiconductor film of thickness bj supported on a substrate of thickness

b2 as a function of steady state velocity V of the a-c boundary. If the a-c

Fboundary is at a temperature Tc, then we can rewrite Eqs. (B31a) and (B31b) in

the form

-2VacS' -2[ rn+ + Vac2]1/2  Si
T'(S) =nVac w1/2 I e e f (Vac) ,(S* < 0)

[ rn+ + Vac2 1 (14a)

-2VacS' -2[rn_ + Vac 2]1/2 Is-l
T'(S") = n"Vac ,1/2 7 e e f (Vac), (S > 0) (14b)

nn-- V 1/2 n-
[rn + Vac 2

where

T'(S) = TI(S") - Tb
Tc - Tb

L (14c)

CI(Tc - Tb)

f (v).n, }t
r / (ctQ~-CSC2Qn 1± ±VQ4-1)

V Qn rn ± + V2
)

0 - K2b2/Klb I and M - /1x2 , and S' is the normalized distance from

the a-c boundary, Vac is the normalized a-c boundary velocity. For the

normalization unit of length d we use b2. Subscripts 1 and 2 refer to laser
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crystallized film and su'Jstrate, respectively. The rn+ and rn-are roots of a

transcendental equation, (B26b), and the Qn± are given by the expression

(B26a) evaluated for rn±.

One case for which the solution of Eqs. (14a) and (14b) can be readily

evaluated is a thin amo:phous film on a thick substrate with identical thermal

properties (M = 1, s - b2/bl >> 1). For this case,

f = f = 21; r = r = (2n + 1)2w2/16.
n+ n- n+ n-

The general condition determining the steady state a-c boundary

velocity Vac is that at S, = 0, T'(O) = 1 or,

1 n'Vacw 112  f n + (Vac) n AV ac7 1/2  f n- (Vac)
n+ Vac211/2 n- 11/2

[ r + Ya 2  r + Vac2] (15)
n+  n-

It is interesting to compare the results of Eqs. (14) and (15) with the

one-dimensional integral equation results of Eqs. (13) and (9), respectively.

Noting that n - fn' , it can be seen that Eqs0 (13) and (9) represent

approximations in which single average terms have replaced sums of terms of

the same form in the two dimensional result.
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We define the functions in the summation in Eq. (14a) and (14b) as

a

-2VS- -2(r + V2 ]l/ 2 is1F±(S', V)  e e n ±  f (V). (16)

n± 1/2 n±
[r + V2]
n±

F±(S',V) is proportional to the steady-state temperature distribution due to a

slit image source of heat scanned with normalized velocity V along the surface

of a semiconductor film. When evaluated for V = Vac, it yields the shape of

the distribution for a-c boundary runaway. We have evaluated Eq. (16) as a

function of S' for a number of values of V for the case of a thin film of Ge on

a fused silica substrate, since the experimental results reported in Sec. II B

were obtained for this case. The values of KI = 0.035 cal/cm secOC, I1 = 0.09

cm2/sec and K2 = 0.0025 cal/cm secOC, K2 = 0.005 cm2/sec were those for Ge

(1), and fused silica (2). The thicknesses used in the calculation,

appropriate to our experiments 7 were bI = 0.3 )in for Ge and b2 = lmm for fused

silica. With these values, 0 2 240, and M z 18.

Figure 10 shows F(S',V) as a function of S' for several values of V.

For V 5'0.1, the leading edge of the temperature distribution begins to

sharpen, and the peak value begins to drop. This is an indication that V has

reached a value at which diffusion of heat can no longer restore the static

temperature distribution as the heat source moves. It should also be noted

that the fact the two portions of the curves of F± (S,V) meet at S' = 0 is a

significant check on the correctness of the numerical calculation, since the
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Fig. 10. F(S', v) as a function of S' for several values of V.
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formal expressions for [F+(S',V)]s- . 0 and [F-(S',V)]S - * 0 are not

identical.

To obtain quantitative results for Vac, we make use of Eq. (15) and

assume that Tc is a fixed transition temperature (modification of this

assumption is discussed in Sec. V). The relation to be solved for V can be

written,

1/2 01ac = [F(O, Vac)-1 . (17)

We plot log [F(O,V)]-l vs log V and log [wl/2 n ] vs log V on the same graph.

The solution for Vac will be given by the intersection of the two curves.

Figure 11 shows [F(O,V)]-I for M = 18, and for several values of 0. We

consider first the curve for B = 240, corresponding to our experiment. One of

the straight lines shown gives log [w1/2n] for no = 2.2, and we see that

there is no solution for this value of no. The minimum value of no for a

steady state solution, nmin, corresponds to the lowest temperature (Tr) at

which runaway can occur. This solution is obtained when the two curves first

cross, and is found to occur when no e 6.1. For values of no greater than

6.1, there are steady state or runaway solutions for Vac which decrease with

increasing no. It should be noted that the two curves first make contact

tangentially as no increases to nVin. This is similar to the integral

equation result, Eq. (10).

It is difficult to identify the first true "crossing" point for two

curves that approach each other tangentially. Roughly, for no g 6.1 the two
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curves cease to run parallel for log V ~ 1.6. Using the relation v ~ 4KlV/b2,

with K1 - 0.09 cm2/sec, and b2 = 10-1 cm, we find, vac a 140 cm/sec. Larger

values of n' should lead to smaller values of vac, consistent with the

integral equation result, Eq. (10).

From the relation (14c), we can calculate the value of Tc if we equate

n' with n'min = 6.1 and Tb with the experimental value of Tr, - 5000C. This

leads to Tc - 550 0C, much lower than the value of - 6800C obtained from the fit

of the periodicity data to the theoretical results obtained from the integral

equation model. As we shall see shortly, the discrepancy can be explained

qualitatively by the presence of a thermal barrier between film and substrate.

We can attempt to approximate the calculated F(O,V) in the form

F(O, V) 3 f/Er + V2 ]1/ 2  , (17a)

where f and r are to be determined for the best fit. Equation (17) would then

be precisely of the form Eq. (9), obtained from the integral equation, where

n=fn'. The open circles in Fig. 11, representing Eq. (17a) with r - 7.95 and

f = 0.093, fit the calculated curve of log [F(O,V)]-I with B = 240 and M - 18

for small V and large V, but fit poorly in between. This value of f is much

lower than that obtained from the integral equation fit to the periodicity

data, f -0.58. As we shall see shortly, this descrepancy can also be

qualitatively explained by the presence of a thermal barrier between film and

substrate.
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We have examined the effect of changing bI and b2 on the values of a

number of properties of a-c boundary runaway. Figure 11 shows plots of log

[F(O,V)]-1 vs log V for M - 18 and B - 120 and 60, in addition to the curve

for 0 - 240, which corresponds to our experiment. We can interpret the

reduction in 0 as due to either a decrease in b2 or an increase in b1. The

results obtained for Vac and vac for n' - 9.0 (corresponding to fixed Tb, and

well above nWmin for all 3 values of 0) are listed in Table 1. It can be seen

that for b1 held fixed at 0.3 on , vac decreases only slightly as b2

decreases. On the other hand, for b2 held fixed at 103 ,1, vac decreases

almost inversely with increasing b1 . However, in most cases it might be

difficult to see this striking drop in vac, since at temperatures above Tr,

spontaneous fluctuations can cause the a-c transformation (see Sec. V.)

Also shown in Table I are values of n'min, with corresponding values

for Vac and vac, as well as approximate values of f and r. It can be seen that

f increases nearly inversely as B decreases, while r increases slowly. It

should also be noted that n'min decreases as b1 increases. This means that

the lowest value of Tb for runaway, Tr, decreases as film thickness increases.

As the film thickness bI increases, the velocity vac for n1'min increases, but

remains In the range of 100-300 cm/sec.

The small values obtained for Tc and f by applying the present theory

directly to experiment can be understood if we postulate the presence of a

thermal barrier between the fused silica substrate and the amorphous Ge film

in our laser crystallization experiments.7 The presence of a thermal barrier
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TABLE I

Results of Two Diimensional Solution for a-c Boundary Notion

Values of a number of quantities calculated from exact solutions of a model of laser

crystallization. as obtained from Fig. 11. For three values of the parameter 0,

effective parameters f and r and the minimum value of n' for runaway, n' min are given.

With n' - n min and n' - 9.0, normalized velocities Vac for a-c boundary runaway are

obtained. For combinations of substrate (b2) and film (bl) thicknesses given, these

values Of Vac lead to the a-c boundary runaway velocities vac that are shown.

Vac Va0 (b2) bI vac(cm/sec) vac(cm/sec)
* f r n~min (n'1w1min) (nV.9. tow (60) (Tl'n'min) 01"~9.0)

240 0.093 7.95 6.1 39 10 10 0.3 140 36

10 0.6 170 14.7
120 0.178 8.72 3.2 47 4.07 ___________________

5X102  0.3 29.3

103 1.2 255 6.8 1
60 0.331 10.15 1.7 71 1.9 ____________________

2.5x102  0.3 27.4

.........



is not at all unreasonable, and could be readily included in the derivation of

modified equations (14a) and (14b). The effect of a thermal barrier is

approximately equivalent to decreasing the thermal conductivity of the

substrate, and Is therefore qualitatively described by decreasing B (although

the thermal conductivity ratio appears in M, this describes the way heat

diffuses once it is transferred to the substrate and should therefore be kept

fixed for this crude argument). To obtain a rouqh idea of the effect of such

a barrier, we examine the effect of decreasing B by comparing the results for

B = 240 with those obtained for B = 60. Referring to table I, we see that for

0 = 60, f has increased to 0.331, much closer to the empirical value 0.58

determined from the experimental data by comparison with the one-dimensional

integral solution. Furthermore, n' min has dropped from 6.1 to 1.7, yielding

a value of Tc s 6650 determined from equation (14c). This is close to the

value of 680* C obtained from the fit of experimental data to the integral

equation model. While this argument is very crude, it does suggest that the

presence of a thermal barrier can eliminate the discrepancy between

experimentally determined parameters and the results of a first-principles

calculation.

IV. Steady State Laser-Guided Solutions

An intriguing class of steady state solutions exists in which the a-c

boundary proceeds at a constant velocity on the leading edge of the scanning

laser image. Solutions of this type will be obtained for both the integral
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equation model and the two-dimensional model of the a-c boundary motion. The

laser-guided mode of a-c transformation could have important Implications for

the controlled growth of semiconductor films. The question of the initial

conditions which permit the system to settle into the steady state

laser-guided mode of motion will be discussed in Sec. V.

A. Integral Equation Model

To find laser-guided solutions, we rewrite Eq. (3) in

the frame of reference, moving at normalized velocity V, in which the laser

and a-c boundary temperature distributions are stationary. The result is

1 T '(0) + n f [V/(T-TO)I/ 2] exp r(T- T)}
0 o (18)

x[exp {-IV (T-'')]2/(T-.r')} d'

where T1 '(O) is the reduced temperature due to the scanning laser image at

the positon of the a-c boundary, TZ'(0) - Tl(O)/(Tc-Tb).

As in Sec. III A, the integral in Eq. (18) can be evaluated exactly for

large enough To, and we find

1 - Tt'(O) + rfJl/ 2 / [r + v2]1/2  (19)

According to Eq. (19), for values of n and V such that nVwl/2/[r + V2 31/2 < 1,

there is a value of Tj/(O) which will satisfy the condition for a

laser-guided solution. For given values of V (determined by laser scan
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velocity) and n and a given reduced temperature profile due to the laser, the

(a-c) boundary will ride at a distance in front of the laser image such that

Eq. (19) is satisfied. It should be noted that solutions of Eq. (19) exist

for values of V arbitrarily small. The question of coupling into such

solutions in real situations is discussed in Sec. V.

B. Two-Dimensional Solution

It is a straightforward matter to show that the two-dimensional

solution of the laser crystallization problem also leads to laser-guided

stationary solutions. As shown in Appendix B, the solution of the steady

state temperature distribution for the boundary value problem in the presence

of several heat sources is the superposition of the solutions in the presence

of the individual heat sources. In the presence of both a laser source of

heat and the heat source due to the moving a-c boundary, the solution for

steady state runaway, Eq. (15), becomes

1 - Tt-(O) + n-Vwl/2 I fn+ (V)
n+ 1/2

[r,+ + V2]

- Tt'(O) + n-V1/2  fn-(V) (20)

rn+ V2]

where Tj'(O) is the reduced temperature due to the scanning laser image at the

position of the a-c boundary. The close correspondence between the

two-dimensional solution Eq. (20) and the integral equation solution Eq. (19)

should be noted.
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Using the definition of F± (S',V), Eq. (16), we obtain for the

laser-guided problem an expression analogous to Eq. (17), which was solved

to determine Vac for runaway. The result is

wl/ 2nV = [F(OV)]-l * (21)
1-TL (O)

We may think of n'/[1-Tjt'(O)] as an effective value, n'eff. Referring to Sec.

Ill B and Fig. 11, it can then be seen that by decreasing I-Tt'(O), the

normalized laser scan velocity V for laser-guided steady state solutions can

be reduced greatly. For a given reduced temperature distribution due to the

laser scanning at velocity V, the a-c boundary rides at a point in front of

the laser image satisfying Eq. (21).

V. Discussion

One of the important assumptions made in calculating the motion of the

a-c boundary for both the one-dimensional integral equation and

two-dimensional solution was the existence of a sharply defined transition

temperature Tc. In fact, the velocity of growth of crystalline material I

directly from the amorphous state, §(T), is a function of temperature,

increasing rapidly as the temperature is raised. This could be interpreted as

determining the temperature Tc(S) at which the transition can take place at a

value of t demanded by the heat flow calculation. From this simplistic point

of view, over a wide range of values of t, Tc varies relatively little and can I
be taken as constant. As already pointed out in Sec. II B, the model solution

I
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of the integral equation at the beginning of each period of boundary motion

requires infinite velocity, and the presence of amorphous and fine-grained

material in the initial portion of each period may be related to the limits on

the rate at which crystalline growth can occur.

We could attempt to improve the approximate description of the boundary

motion using the integral Eq. (3) by replacing n by the quantity

neff(S) = f L(S)/[Tc(S) -Tb] (22)

where Tc(S) is the critical temperature appropriate to the value of S, and

L(§) is an effective latent heat which is that portion emitted when partial

conversion to crystalline material takes place at boundary velocity . We now

interpret t as the velocity of a "heat flow boundary", which is identical to

the a-c boundary when that boundary is well defined. We can see that at large

, neff(S) is reduced because L(g) is reduced and Tc(S) is increased. At

lower values of §, L(§) + L, and Tc(S) - Tc. The introduction of an neff(S)

of this form could eliminate the unphysical singularity in the initial motion

present in Eq. (3), while still yielding a very high initial value of ,

consistent with the initial amorphous and fine-grained polycrystalline

material in each period. The introduction of an nleff(Vac) in Eq. (17) would

also modify the exact solutions obtained for Vac from the boundary value

problem.

As mentioned in Sec. II B, the value of Tc obtained by fitting the

results of the integral equation solution to our experimental data was
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Tc - 68 0 C, very close to the value of 696*C predicted by Bagley and Chen10

for the transition temperature from the amorphous to liquid state of Ge. It

has been suggested 14.15 that "explosive" crystallization (or runaway) may

correspond to the occurrence of this transition, and some experimental

evidence supporting this point of view has been obtained. 16  If, in fact, Tc

does correspond to the amorphous-to-liquid transition, the assumption of a

fixed Tc over a range of S is reasonable. Once the transition from the

amorphous to the liquid state had occurred, the unstable liquid would rapidly

transform to the crystalline state.10 For small temperature differences

across a thin liquid layer, the treatment we have presented would then require

no major modification.

Throughout this paper, we have treated the amorphous and crystalline

regions of the semiconductor film undergoing laser crystallization as istropic

and homogeneous regions, with the transformation from the amorphous to the

crystalline state governed by macroscopic heat flow equations. An important

ingredient absent from this description, and essential for even a qualitative

understanding of crystallized film morphology, is the role of nucleation

centers17 and "nucleation events". Because the exact nature of the a-c

transformation in laser crystallization is not yet certain, we will not

attempt a detailed description of nucleation. We regard a nucleation event as

a spontaneous, localized fluctuation which initiates a transformation from the

amorphous to the crystalline state and produces a small increase in local

temperature above the background determined by macroscopic heat flow. A
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nucleation event has a probability of occurrence which increases with the

density of nucleation centers (which depends on film perfection) and with

increasing temperature. For Tb just below Tr, the lowest temperature for

runaway, nucleation events can produce transformation from the amorphous to

crystalline state in small regions of finite range about nucleation centers. 18

For Tb - Tr and in the absence of an external disturbance such as a laser

beam, multiple nucleation events can occur, overlapping and spontaneously

transforming the entire film to the crystalline state in a short time if the

probability of such events is high enough. From the discussion of Sec. III B,

the lowest value of Tb for runaway, Tr, is higher for thinner films,

decreasing as the films become thicker. Since the probability of nucleation

events increases with increasing temperature, spontaneous transformation to

the crystalline state should occur most readily at Tb - Tr for thin amorphous

films. This is consistent with our observation of laser-induced runaway for

films of thickness greater than 1 un, while only spontaneous transformation is

observed for films 0.3 ji thick.

The occurrence of nucleation events appears to play a major role in the

morphology of laser-crystallized films. In the films that we have examined in

detail, the elongated crystallites within each periodic feature form a roughly

chevron-like pattern, with the two halves of the pattern symmetrical about an

axis that is parallel to the laser scan direction and located near the center

of the laser image. The elongated crystallites on each side of the pattern

have their long axes aligned along [100] directions. A blown-up picture of a
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crystallized film near the center axis of the chevron pattern is shown in Fig.

12. The "origin" of the chevron pattern within each periodic feature is

a small region located somewhere near the center axis. The exact lateral

position of the origin varies from one period to the next over a distance of

V4 perhaps 100 pm (- 10% of the slit image length). This suggests that the

origin represents the position of the first nucleation event within a

periodic feature where the heat flow boundary is moving slowly enough for

large crystallites to form. The first nucleation event would be likely to

occur near the center axis, since the laser slit image is an ellipse of high

aspect ratio and the temperature should therefore first reach Tc near this

axis. Once nucleation and growth of large crystallites began, heat would flow 2
forward, but also laterally, raising the temperature and inciting the

nucleation of new growth centers laterally. The direction of growth from

these centers would tend to be channeled by such factors as interaction with

neighboring crystallites already formed,19 strong anisotropy in the

directional dependence of growth rate, and perhaps stresses in the film. The

result of all of these influences would combine in a statistical way, but it

can be argued that the outcome would be largely determined by the tendency of

growth to occur along the direction of the temperature gradient at the a-c

boundary, combined with the high rate of growth along a [100] direction

compared to other crystallographic directions. Motion of the a-c boundary

would occur laterally as well as along the laser scan direction, but a

periodic morphological pattern would still result. This description is
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-*1 100 pm
Fig. 12. Blown up view of periodic features in a Ge film crystallized
by the slit image of a laser. Picture taken near the center axis of
the slit image shows the origins of chevron pattern.
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consistent with the observed chevron pattern, and could serve as the basis for

a more complete analysis.

In Sec. IV we discussed a class of laser guided stationary solutions of

both the integral equation formulation and the two-dimensional formulation of

a-c boundary motion. The problem remains of identifying spatial and temporal

initial conditions which allow the boundary motion to settle into such a

constant velocity stationary state. The solution of this problem could have

important implications for the possibility of producing uniformly aligned,

laser crystallized semiconductor films. In studying solutions of the integral

Eq. (3), as discussed in Sec. IIA, we noted that for a given interval 6T used

in numerical integration, values of normalized laser scan velocity V could be

found which were large enough to generate damped oscillatory behavior in S(T).

After a few cycles, S(T) settled down to a constant value, consistent with the

a-c boundary riding at a fixed distance in front of the scanning laser Image,

as expected in a laser-guided stationary solution. However, if V was now held

fixed and 6T decreased further, the damped'oscillatory behavior was again

replaced by perodic relaxation oscillation behavior of the type shown in Fig.

2 for n = 0.3 or 0.6. These numerical results are to be expected, since a

given value of 6T gives rise to an effective finite initial velocity Veff of

the a-c boundary, and for a value of laser velocity V > Veil, damped

oscillatory motion should result. On the other hand, Eq. (3) is

characterized by singular behavior of the initial velocity, so that decreasing

-r sufficiently will increase Veff to the point where Veff > V, and the a-c
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boundary again outruns the laser, resulting in periodic relaxation

oscillations. As we have seen, this singular behavior of the initial velocity

of the a-c boundary is unphysical, and would probably be eliminated from the

mathematical description by replacing n in Eq. (3) by a velocity dependent

neff given by Eq. (22). Under these circumstances, the nature of the solution

obtained should not depend on the interval ST chosen for numerical

integration, provided that 6T was sufficiently small. The argument implies

that for a small value of laser scan velocity V, the initial motion of the a-c

boundary would be characterized by some finite velocity Vo. For laser scan

velocity V > Vo, we would then expect a damped oscillatory behavior of S(T),

with the motion settling into a laser-guided stationary state. A slow

decrease in V could perhaps then lead the a-c boundary motion into a

laser-guided stationary state at a lower velocity, with the a-c boundary

riding close to the thermal image of the scanning laser. However, the

stability of such states remains questionable. All of these points are highly

speculative, and require further exploratioh.
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APPENDIX A - Numerical Solution of Integral Equation

The non-linear integral equation (3) cannot in general be solved

exactly, and approximate solutions must be obtained numerically. Although

the results are not entirely satisfactory, to solve Eq. (3) we have used a

slightly modified rectangular rule to evaluate the integral, making use of the

already determined values of S(r') at earlier times ' to evaluate S(r )

self-consistently at time T. The modification of the rule consists of removing

the singularity in the integrand at T'= T by treating all terms except

(r.-V)i/2 in the integrand as constant in an interval 6T', and integrating

(r-T')l/ 2 over the Interval 6T'. The integral equation (3) is then replaced

by the approximate equation,

1 - aexp S21 + n n Ynm m exp r(Tn- ) x (Al)
nm=O

(Tn- T)1/ 2

exp {I-[Sn-Sm + V (In-m) ]2 /(-n-1n) 6-,

where ynm = 2(n-m)1/2 [(n-m)1/2 - (n-m-1)1/2 ], and

§m - Sm - SiM-1 , m *0; o - O.
6T

Sm is the value of S at T - Tn, and (Al) is solved for Sn using the values of

Sm determined for earlier times. When §m < -V, the assumption is made that

the front has ceased to move, and ( , + V) is set equal to zero.
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Once the set of values SO, S1 , ... Sm has been determined, the reduced

temperature at point S' at time T a in, given by Eq. (5), can be determined

numerically using an approximate trapezoidal rule which yields the relation,

T' (S', T ) * aexp {-S }.+ n y x
n mmO nm

n -m

exp (-r(t -T )} x
n m

( 2
exp s -Sm + V( n - IM) /(n - TM) 6r . (A2)

Equation (A2) has the advantage that it gives reasonable results for S, well

away from Sn, and agrees exactly with (Al) for S' - Sn. However, it gives

rise to a spurious spike near S' - Sn. The origin of this spike can be seen

by comparing the second exponential in the integrand of Eq. (5) with the

corresponding exponential in the summation of (A2). For S' * Sin Eq. (5),

the exponential term -- as T"'. T yielding a vanishing contribution to the
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integral. The term corresponding to T' T ' in (A2) is

2
-CS, -S + V 6T]

n -1 yielding a non-vanishing contribution of the sufluation

which peaks up when S' - S n1- V6,t and gives rise to a spike of width

1/2
A'- (6T) .The spikes have been substracted out in the plots of

T'(S', -r) vs S' shown in Figs 7, 8, and 9.
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Appendix B - Two-Dimensional Stdtionary Solution of a-c Boundary Problem

We consider a two-dimensional heat flow problem in which a moving

source of heat scans at a steady velocity v along the surface of a film (1) of

thickness bI deposited on a substrate (2) of thickness b2 (see Fig. B1). If

the properties of the film are the same whether it is in the crystalline or

the amorphous state, we need not at the moment specify the state of the film.

We assume that the moving source deposits heat only in the film and uniformly

in the x-direction. The heat flow equations in regions (1) and (2) are then,

K, [±2TI + a2TI] -C i + G (y-vt) o

a2 ;2  at

K2 [-T2 + -- C2 P2  2[ x2  jT2 at
4

where G(y-vt) is the heat energy delivered to the film per cm3 per second.

If we consider only stationary solutions in a frame of reference moving

with velocity v, then T1 and T2 are dependent on time only'by virtue of their

dependence on (y - vt). In this moving frame of reference these equations

become,

a21I + a2 T1 + Clplv 3T1 + G 0 (B1)
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-D J+D

zx

bj~vPq b T2( (y-v

9c 1 2 2' C2

Fig. B-1. Diagram for the calculation of the exact stationary solution .

of moving a-c boundary problem.
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2 2T2 + 3 T2 + C2P2v 8T2  = 0 (B2)

where u - y - vt.

The heat flow out of the film surface is zero:

[aTl(xu) 1 0 (B3)
[ 8x ) x=O

The boundary conditions at the interface between film and substrate require

that the temperature and heat flow across the boundary are continuous: I
[TI(x.u)] - [T2(x.u)](x-bI  x-b1  (84)

K [Tl(x~u)1 K [T(~
1 ax x-bl 2 x x=b1  (85)

At the base of the substrate the temperature is Tb:

[T2 [x,u) = + Tb • (B6)xbl+ b2)

We now assume the film is so thin that the temperature variation across

it is quite small. Integrating (B1) with respect to x, and using (B3) and
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(B5) to eliminate aT1/ax yields,

K2T + 2T1 + p CV T + G(U) 0 (87)

x-b1

Finally, if we allow b1 to become very small compared to b2, we can write the

coupled equations to be solved for T1 (u) and T2 (x,u) as,

a2T2 + 32T2  + v T2 = 0 (B8)

K2  [aT2 1 + 2T1 +_ *0 (TI)
jK1  a~xu x.) BUT K1  Wu K1

with boundary conditions

T1(u) = [T2(xu)J (810)
x=0

CT2(x,u)] * Tb * (B11)
x-b2

We introduce the Fourier integrals of (Tl(u)-Tb) and (T2 (x,u) - Tb):

I"IT1(k )  f (171(u) - TO) eik" du (812)

'2(x.k) - f (T2(x.u) - Tb)eiku du , (813)
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with inverses

Tl(u)-Tb - 1 f T1(k) e-iku dk , (B14)

T2(x,u)-Tb 1 2(xk) e-ik u dk (B15)

Applying (B12) - (B15) to (B8) - (B11), we obtain

3 - ' 72 - 0 (B16)

~x2

K2  " +  0 (B17)bj 0

"1= 123o  (B18)

b2  0 (B19) 4

where g(k) is the Fourier transform of G(u),

g(k) I G(u) eiku du , (620)

a= k2 + i vk ,and
2

C 12 -k 2 + i vk .
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The solution of (B16) is of the form,

T2-Aecex + BeOQex . (821)

Substitution of (B21) into (818) and (Bi9) permits the expression of A

and B in terms of -q. Further substitution of these expressions into (817)

gives the solution for rj in the form,

a?~ 2 /K2 coth (a2b 2)(B2

The inverse Fourier transform (B14) leads to the result,

Tj(u) -Tb + 1 f ~ )/ 1 e-k k(B23)
06 + a ~ coth (oeb2)

We will take G(y-vt) -G(u) to be of the form,

G(y-vt) - G * 8(u) where e(u) -0, u < -0, u > 0, (B24)

8(u) -1, -D < D0

This form yields,

g(k)u 2 sin kO.G .(B25)

k
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It is important to note that for several heat sources, g(k) is the

superposition of contributions due to the Individual sources. Thus, for a

case in which separate laser and latent heat inputs are present, the solution

of the problem is the sum of individual terms of the form (B23).

With g(k) taken to be of the form (B25), we will write the integral

(B23) in terms of normalized quantities. We introduce a characteristic

normalization length d to be specified and write,

T1 (S') = Tb + el f (Gd2/K) 2 sin qD' e-iqS' dq (B26)

q -4r(q) + Q(q) cot Q(q)

where q = kd, D' - D/d, S' = u/d,

21r(q) 112 = cid = [q2 + 4Vq ]/ 2 ,

Q(q) = -i(a2d) (b2/d) - 2 [r+ 2V IM-I} {-V t [r+ V2)1/ 2 }]1/ 2 (b2/d), (B26a)

and

B K2d
2

M = / 2

V =dv/4q .

The quantities B,M,V are the important parameters of the model. For

convenience we will in this appendix, choose d - b2 so that o becomes

61

L _______ _...._ L i
-- 4 __I____



K2b2/Klbi. The (±) sign in Q(q) represents the fact that for a given value of

r(q), there are two values of q given by,

q = 21 {-V [r + V2 ]1/2

* with the + sign corresponding to postive imaginary q and the minus sign

corresponding to negative imaginary q.

The notation p f signifies the principal part of the integral:

p f dq = f dq + f dq, where c is an infinitesimal quantity. This is

important in evaluating (B26), since the integral is singular at q * 0.

The integrand in (B26) is a single-valued function of q with poles

given by q 0 and

D(q) = -4 r(q) + 6O(q) cot Q(q) = 0 . (B26b)

If Q(q) is complex, as it will be for much of the complex q-plane, Q(q) cot Q(q)

is still well defined. For Q(q) pure imaginary, QcotQ + IQl coth fQJ.

The integral can be evaluated by contour integration after

appropriately closing contours at Ijq = ". Sin qD' is written as

(eiqD" - e-iqD')/2i, and the individual integrals are of the form

p f e-iqZ f(q) dq

For Z > 0, the contour is closed in the lower half plane, while for Z <0, the
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K .I =1 ..

contour is closed in the upper half plane. The integrals can be evaluated

using the residue theorem. The contributions from the zeros of D(q) are *

obtained by writing D(q) in the vicinity of the n-th pole as F

D(q) n -B ["(q-) (q - qn ) ,

which introduces a factor of (3O(q)/aq)q~qn into the denominator of the

expression for the n-th residue. For large values of the parameters B, the

case of interest here, the zeros of D(q) lie on the imaginary q axis in both

the upper and lower half plane (corresponding to r(q) real).

Without going through all of the arithmetic, we present the results of the

evaluation of (B26) after performing the contour integrations. Ti(S') can be

written as,

TI(S') - Tb + I (Gd2 /K1 ) {Fn+ (SO - 01) - Fn+(SO+DA)} (SO < - O)
n+

TI(S') - Tb + I (Gd2/KI)Fn+ (SO - D') (B27)
n

(Gd2 /K1)Fn . (SO + DO) + (Gd2/Ki) (-Do < So < DO)
n- B

TI(S-) Tb + Z (Gd2/K1) {Fn- (S' + D) -Fn -(S'- D) (DO < SO)
n-
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where

e[-V , (rn + V2)l/2 12Z
Fn± (Z) = , (B28)

(aO±/ar)n± (ar/aq)n± 21[-V ± (r + V2 )I/ 2 ]
~n ±

D = -4r(q) + aQ (q) cot Q (q)
± ± ±

-4r(q) q2 + 4 iVq, and

Q (q) = 2[r + 2V [M - 1] {-V ± (r + V2)1/2 1] 1/2.

The rn± correspond to the zeros of D± . The values of q corresponding to rn±

are

qn= 2 1 {-V ± [rn± + V2] 1/2

The r's are real numbers while the q's lie along the imaginary axis.

We will be concerned with the case where D' is very small. Expanding

Fn± (S' -D') and Fn± (S' + D) to first order in D', and taking the remaining

derivatives in (828), we obtain

TI(S-) - Tb + D' (Gd /KI) x
n + [ 2 0 c o t Q - c 2 n I + V ( 1 - _

nQ64
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e-2VS" e-2 [rn+ + VI' ISI (S- < 0)

I,~ 21/2
-Lrn+ +V2.1

TI(S ) u Tb + X (Gd /K ) xj

[2- cot Qn. -csc 2 On-
- Qn-1-M-

I

e,2VS e-2 [rn- + v2 ]1/ 2 Is1l (B29)

[rn_ + V2 1 /2

(So > 0).

Now, suppose that the source of heat energy delivered to the film is

the latent heat given up as the a-c oundary moves. The energy G delivered

per cm3 per second is,

G . LPlV

where 2D is the width of the region over which this energy is delivered in
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time 2D/v. Introducing normalized quantities,

a

(Gd2/K1) - 2 L V (830)

rC,

Substitution of (B30) into (B29) and some simple manipulation of the

resulting expression leads to,

TI(S) = Tb + LV e-2VS e-2[rn+ + Vi] /  sI (631a)

n+ [rn+ + v2]1/2

1

[1- /2 tcot Qn+ csc2 n + rV + ;+- V)}

(S- < 0)

LV e- •2VS' e-2 [rn - + V211/2 I x (831b)

T(S)n Tb + nI rn- + V23 1/2
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[1 0 /2 fcot Qn:- csc2 Qn} '

(S- > 0).

Equations (B31a)and (B31b) are used to calculate the velocity of the a-c

boundary in the steady-state runaway condition in Sec IIIB.
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